Math	7B	- Week	9
------	----	--------	---

C=2

Section Number:

1 Solve the following pure-time initial value problem $\frac{dN}{dt} = \sqrt{t+9}$ where N(0) = 20.

[N== 3(++9) 3/2 +2

Solve the following pure-time is
$$\int clN = \sqrt{1+49} \, dt$$

$$N = \frac{3}{3} (1+4)^{3/2} + C$$

$$20 = \frac{3}{3} (9)^{3/2} + C$$

$$20 = 18 + C$$

2a Solve the autonomous differential equation $\frac{dy}{dx} = y + 1$.

$$\int \frac{1}{1+1} dy = \int dx$$

$$\ln |y+1| = x + c$$

$$\frac{1}{1+1} = \frac{1}{1+1} = x + c$$

2b Solve the autonomous initial value problem $\frac{dy}{dx} = y^2 + y$ where y(0) = 1.

$$\int \frac{1}{y(y+1)} dy = \int dx$$

$$\int \frac{1}{y(y+1)} dy = \int dx$$

$$\int \frac{1}{y} = \int = \int dx$$

$$\int \frac{1}{y}$$

3. Solve the separable differential equation $\frac{dy}{dx} = 2xe^{-y}$.

$$\int e^{4} dy = \int 2x dx$$

$$e^{4} = x^{2} + C$$

$$\left[Y = \ln(x^{2} + C) \right]$$

4. Solve the following separable differential equations with their initial values.

(a)
$$y' = 6y^2x$$
 where $y(1) = \frac{1}{25}$

$$\int \frac{dy}{y^2} = \int 6x dx$$

$$-\frac{1}{25} = 3x^2 + C$$

$$-25 = 3 + C$$

$$C = -26$$

$$y = \frac{1}{28 - 3x^2}$$

(b)
$$\frac{dy}{dt} = e^{y-t} \sec(y)(1+t^2)$$
 where $y(0) = 0$.
 $\int e^{-y}(\cos(y)) dy = \int e^{-t}(1+t^2) dt$ $= \int e^{-t}(\sin(y)) - e^{-t}(t^2) dt$
 $= \int e^{-y}(\sin(y)) - e^{-t}(t^2) dt$ $= \int e^{-t}(t^2) dt$
 $= \int e^{-y}(\sin(y)) - e^{-t}(t^2) dt$
 $= \int e^{-y}(\sin(y)) - e^{-t}(t^2) dt$
 $= \int e^{-y}(\sin(y)) - e^{-t}(t^2) dt$
 $= \int e^{-y}(\cos(y)) - e^{-t}(t^2) dt$

- 5. Suppose that an object has a temperature T and is brought into a room that is kept at a constant temperature T_a . Newton's law of cooling states that the rate of temperature change of the object is proportional to the difference between the temperature of the object and the surrounding medium.
 - (a) Denote the temperature at time t by T(t).

$$\frac{dT}{dt} = k(T_a - T)$$

Derive the solution to the differential equation, assuming that at time t = 0, the temperature of the object is $T = T_0$.