Scientific Notation

Scientific notation is a way to write large & small #'s compactly & still be able to perform meaningful computations something × 10ⁿ & 1 ≤ something < 10

Ex

Quantity	Size	Scient, fic Notation
Rodius of the sun	695,500,000 M	6.955 · 10 ⁸ m
Student Loan Debt (total US)	\$1,560,000,000	1.56-10 ⁹ dollars
Distance to Andromeda	24,34 <i>0,000,000,000,000,</i> 000,000,000 M	2.434·102 M
Diameter of a Red Blood Cell	0.0000075m	7.5 · 10 ⁻⁶ m
Atomic Radius of Hydrogen	0.0000000025m	2.5 · 10 ⁻¹¹ m

Factoring

Common Factors: When factoring, the first thing you should always do is pull out common factors among the terms (it cleans it up).

$$\frac{15}{15 + 10 \times -15 \times^2}$$
 common factor is 5
= 5(3 + 2 \times -3 \times^2)
Can always check by multiplying it back out.

$$5.3 + 5.2 \times -5.3 \times^2 = 15 + 10 \times -15 \times^2$$

•
$$|2x^{2}y^{2} - 20x^{3}y$$
 common factor is $\frac{4x^{2}y}{2}$
= $2(6x^{2}y^{2} - 10x^{3}y)$
= $2\cdot 2(3x^{2}y^{2} - 5x^{3}y) = 4(3x^{2}y^{2} - 5x^{3}y)$
= $4x^{2}(3y^{2} - 5x^{3}y) = 4(3x^{2}y^{2} - 5x^{3}y)$
= $4x^{2}(3y^{2} - 5x^{3}y)$

$$30 a^{2}bc^{2} - 12ac^{3} \text{ Common factor is } 6ac^{2}= 6(5a^{2}bc^{2} - 2ac^{3})= 6a(5abc^{2} - 2c^{3})= 6ac^{2}(5ab - 2c)$$

 $a \times^2 + b \times + c$

The first goal is to find 2 numbers that multiply to $a \times c$ and add to b.

$$\frac{E \times}{1} \times \frac{1}{2} + 4 \times + 4$$
$$= (\times + 2) (\times + 2)$$

$$2) \times^{2} - 4 \times + 4$$
$$= (\times - 2)(\times - 2)$$

3)
$$\times^{2} - 4$$

= (x - 2) (x + 2)
 $A^{2} - B^{2} = (A - B) (A + B)$
 $9 - 4 = (3 - 2)(3 + 2)$

4)
$$9 \times^2 - 25$$

= $(3 \times -5)(3 \times +5)$

5)
$$6 \times^{2} - 6y^{2}$$

= $6(x^{2} - y^{2})$
= $6(x - y)(x + y)$

·Factor 3x ² -5x-2	Pairs of Factor	Sums of Factors	
$3\times(-2) = -6$	-6	-5 (-	
>plit the middle term Using	-1 6	S	
these numbers	2 -3		
$=3\times^{2}+\times-6\times-2$	-23		
$= \chi(s \times +1) - J(s \times +1)$			
It you did it correctly, you	Should have	the same i	
In the parentheses $= (x-2)(3x+1)$			

• Factor $12 \times {}^{3} + 10 \times {}^{2} - 8 \times$ = 2 (6×³ + 5×² - 4×) = 2× (6×² + 5× - 4) factor 6×(-4) = -24 Split the middle term Using

lains of	TO EMUC
Factors	Factors
1 -24	-23
-1 24	23
2 -12	-10
-2 12	10
3-8	-5
-3 8	5 ←
4 -6	-2
-4 L	

Split the middle term Using These numbers

 $6x^{2}+5x-4$ $= 6x^{2}-3x+8x-4$

Factor

$$= 3 \times (2 \times -1) + 4(2 \times -1)$$

= (3 \times +4)(2 \times -1)

50 $|2_{\times}^{3}+|0_{\times}^{2}-8_{\times}=2_{\times}(3_{\times}+4)(2_{\times}-1)$