
1/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

An Introduction to Machine Learning and

Neural Networks

Raymond Matson

University of California, Riverside

April 2, 2021

2/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Overview

1 Properties of ML

2 Linear Regression

3 Other ML Algorithms

4 Neural Networks

5 Additional Notes

3/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Notes

This is only an introduction into the subject, geared
towards surface-level programming and basic
understanding as opposed to theory (which is easy to
deep dive into).

This will be somewhere between what you normally find
online, theory or application, but you’ll get neither really.

A lot of details are different “in practice.”

Everything discussed in this presentation was figured out
between the 1960’s and the 1980’s.

4/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Questions

What is machine learning? What does it mean for a
machine to learn?

How would you describe a neural network?

What is a neuron in an artificial neural network?

5/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

ML Coding vs Traditional Coding

Traditional coding:

Inputs

Rules

Outputs

ML coding:

Inputs

Outputs
Rules

Difficult to change this mindset −→ job opportunities for
mathematicians.

Write most of the program’s backbone before testing.

6/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Set Up

Suppose you have a bunch of (labeled) data and you
want to discover patterns or create predictions.

First separate your data into training data (data used to
train the model) and testing data (data used to test
accuracy).

Training Data Testing Data

7/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Simple Linear Regression Scenario

For now let’s assume we only have 1 parameter for our data.
We want to make a “best fit line” within our data points.

2 4 6 8

2

4

6

8

What would be a good slope for this?

8/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Guessing

The program will first “randomly guess” the slope of the line.

1 2 3 4 5

1

2

3

4

(1, 2)

(1, .75)

Guesses m = 3
4
.

⇒ Error of 1.25.
Square the error.

Can repeat for each data point and square the errors to keep it
positive.

9/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Loss Function

Plot the error. It’s parabolic since we used a squared loss
function. This would look different if we used a different error
function, such as absolute value or Huber loss.

slope

er
ro
r

10/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Optimize

After the first guess, how does the model find a better guess?
mnew = mcurrent − kE ′(mcurrent) where E (x) is this error
function.

1 2 3 4 5 6

1
2
3
4
5
6
7
8
9
10

mnew = 0.75− (0.01)(−13)

= 0.88

which is a better slope.

Now repeat.

11/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

But What About...

This process of finding the best slope via minimizing the
error is called gradient descent.

But Raymond, aren’t there already formulas out there
that can just find the optimal error/best slope?
Yes, however, this is for simple cases (such as the
previous example).

Notice in the example we just did we had a y-intercept at
the origin. What do we do if the y-intercept is shifted?

12/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Guessing y-int as well

Add a dimension to guess the y-intercept as well

y-int

error

slope

and use partials instead

mnew = mcurrent − k
∂

∂x
E (x , y)

bnew = bcurrent − k
∂

∂y
E (x , y).

13/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Multiple Parameters

So if you have a bunch of parameters, you would instead use

y = b +m1x1 +m2x2 + · · ·+mn−1xn−1

bnew = bcurrent − k
∂

∂b
E (b,m1,m2, · · · ,mn−1)

m1,new = m1,current − k
∂

∂m1
E (b,m1,m2, · · · ,mn−1)

...

mn−1,new = mn−1,current − k
∂

∂mn−1
E (b,m1,m2, · · · ,mn−1).

14/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Multiple Parameter Effects

Clearly you would be plotting points in Rn+1.

Something you may want to see is how the results are
changing over time, which is hard to see conceptually.

Usually you can only graph individual parameters/slices at
a time
⇒ harder to understand results
⇒ need more faith in the programming.

What about nonlinear best fit curves?
Assuming you know the degree already, similar idea but
grosser: y = ax3 + bx2 + cx + d

More annoying to graph.
How will the error function change?

15/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Alternative Scenarios

Logistic Regression: Two possibilities such as T/F,
Pass/Fail, Survive/Die, etc.

Ex: 93% match on netflix

GA (Genetic Algorithm), Neat (NeuroEvolution of
Augmenting Topologies), SA (Simulated Annealing), EM
(Expectation-Maximization), PSO (Partial Swarm
Optimization) are all different types of machine learning
algorithms, all with their own benefits and limitations.

Different error minimizations for different situations

Supervised vs semi-supervised vs
unsupervised/independent learning (tagged vs untagged)

Let’s finally look at a neural network!

16/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Alternative Scenarios

Up until now, everything has either been “linear” or we
know a lot of the information already, AKA that was the
easy stuff.

Works for simple enough scenarios but will be fairly
ineffective for more complicated situations (which aren’t
hard to find).

17/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

What is a Neural Network

In order to deal with more complicated scenarios, we’ll
use a neural network.

Conceptually, it’s a chain of (complete) bipartite graphs.

Inputs Hidden Layers Outputs

Each edge has a weight that gets adjusted (like the slopes
in linear regression model).

18/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

MNIST Example

We’ll use a categorical example to understand this,
however, these neural networks can also be used in
noncategorical machine learning as well.

Makes more sense at first in a more categorical version
in my opinion.

A model using the Modified National Institute of
Standards & Technology’s datasets is a good example to
keep in the back of your mind.

This particular example using MNIST datasets is
typically considered to be the “hello, world” of neural
nets.

19/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

MNIST Example

Box 7

Box 3

Box 1

Box 5

Box ??

20/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Edge Weights

Each edge has a weight that will get adjusted, just like the
slopes in the linear regression example.

ai bi ci di

What do we want b1c3’s weight to be? What parameters
should it have?

21/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Evaluating Nodes

Given a bunch of edge weights, what do we do with it?
Suppose we have our inputs (the ai ’s) and some randomly
assigned weights (wi ’s). To calculate, say b1, sum over
the products of weights and inputs connected to b1 and
normalize it somehow.

b1 = σ(w1a1 + w2a2 + w3a3 + w4a4 + w5a5)

where σ(x) is either a sigmoid function, 1
1+e−x , or a

rectifying activation function, (ReLU)(x) =

{
x x ≥ 0

0 x < 0
.

We can also add a bias for a binary state by subtracting it
inside σ (usually needed if using an activation function
like ReLU).

b1 = σ(w1a1 + w2a2 + w3a3 + w4a4 + w5a5 − 3)

22/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Counting The Variables

Let’s calculate how many weights and biases the neural
network will need to figure out.

5 inputs, 2 hidden layers with 4 nodes each, and 3
possible outputs ⇒ (5× 4) + (4× 4) + (4× 3) = 48
weights and 4 + 4 + 3 = 11 biases, totaling 59 variables.

23/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Realistically...

Unfortunately, you will never find a NN this simple.

In the MNIST example, each pixel is an input. Each jpg is
28× 28 ⇒ 784 variables for the first layer alone!

You can imagine there are a lot of variables to look for
and approximate ⇒ it’s better to leave it to a machine.

24/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

What is ML

Back to the question:

What is machine learning?
What does it mean for a
machine to learn?

Machine learning is just when a program minimizes the
error of guessed weights and biases.

25/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Linear Algebra Perspective

But Raymond, everyone says you need to know linear
algebra to understand machine learning? Where’s all the
linear algebra? I want my linear algebra!
Or my money back...

Like a lot of things, writing things with matrices and
vectors can clean it up a bit.

Not to mention, this is probably how your program will
calculate everything. Remember, NumPy is your friend!

26/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Linear Algebra Perspective

Let wi ,j be the weights of edges between first and second
layers, ai be a the activations from the first layer, and bi
be the biases. Then

σ(Wa+b) = σ



w0,0 w0,1 · · · w0,n

w1,0 w1,1 · · · w1,n
...

...
. . .

...
wk,0 wk,1 · · · wk,n



a0
a1
...
an

+


b0
b1
...
bk


 .

How does this do the job more efficiently or make things
easier?

27/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Neurons

What is a “neuron” in an artificial neural network?
A neuron is a function

ni : {Outputs from Previous Layer} → [0, 1]

defined by the weights and biases.

Thus a neural network is really just a giant composition
of functions.

Let’s say we set up a NN as explained. What will
happen? It’s first run through it will spit back something
not correct (probably).

28/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Cost Function

If we give it a 7, it will return random numbers. To
change the weights, we need a cost function.

What do you notice
about these numbers
relative to how correct
the model guessed?

The cost is the sum over these squares = 3.3999. We
want to minimize this.

29/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Cost Function

Find the average cost of all of your training data.
Observation: Cost functions takes in weights and biases
and outputs a single number. It’s defined with respect to
the training data.
This is the corresponding “error function” we saw earlier.

This beast of a
cost function lives in
R|{weights}|+|{biases}|+1

30/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Gradient Descent

Recall that the gradient of a function gives the direction
of the steepest ascent ⇒ −∇C is the direction of
steepest descent.

Put all of the weights and biases in a column vector, v⃗ ,
and transform it the following way

v⃗ 7→ v⃗ −∇C (v⃗).

Then repeat with the new weights and biases. ∇C can be
found somewhat efficiently using back propogation.

A recursive alorithm nudging layers individually instead
of the entire thing.

31/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Stochastic Gradient Descent

In practice, you would instead want to take training data,
shuffle it up, and making mini-batches. Then compute a
step of the back propogation according to the mini-batch.
Repeat for each mini-batch.

This is less efficient as it’s not over the entire set,
however, this is a major computational speed up and
fairly good at approximating.

“It would be like a drunk man stumbling aimlessly down a
hill but taking quick steps, rather than a carefully
calculating man determining the exact downhill direction
of each step, before taking a very slow and careful step in
that direction.” - Grant Sanderson.

32/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Common Problems

Bad or incomplete data

How do you think this affects the model?

How/when can we deal with these holes?

More structured data ⇒ the more even the local minima
are with respect to each other.

Overtraining (memorizing vs generalizing)

Why is this bad?

Obtaining a suffient amount of labeled data

unsupervised learning

33/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Fun Thoughts

The model is actually smarter than just guessing!

Classifying data based on topology of cost function and
hidden layers

Manifold hypothesis

Fundamental groups and higher homotopy

34/34

Properties of ML Linear Regression Other ML Algorithms Neural Networks Additional Notes

Thank you!

	Properties of ML
	Linear Regression
	Other ML Algorithms
	Neural Networks
	Additional Notes

