An Introduction to Machine Learning and

Neural Networks

Raymond Matson

University of California, Riverside

April 2, 2021

Overview

@ Properties of ML
© Linear Regression
© Other ML Algorithms
@ Neural Networks

© Additional Notes

@ This is only an introduction into the subject, geared
towards surface-level programming and basic
understanding as opposed to theory (which is easy to
deep dive into).

@ This will be somewhere between what you normally find
online, theory or application, but you'll get neither really.

@ A lot of details are different “in practice.”

@ Everything discussed in this presentation was figured out
between the 1960's and the 1980's.

Questions

@ What is machine learning? What does it mean for a
machine to learn?

@ How would you describe a neural network?

@ What is a neuron in an artificial neural network?

Properties of ML
e0

ML Coding vs Traditional Coding

e Traditional coding:
e ML coding:

e Difficult to change this mindset — job opportunities for
mathematicians.

@ Write most of the program’s backbone before testing.

Properties of ML
o]]

Set Up

@ Suppose you have a bunch of (labeled) data and you
want to discover patterns or create predictions.

o First separate your data into training data (data used to
train the model) and testing data (data used to test
accuracy).

Training Data Testing Data

Linear Regression
@®0000000

Simple Linear Regression Scenario

For now let’'s assume we only have 1 parameter for our data.
We want to make a “best fit line” within our data points.

8 ° -

What would be a good slope for this?

Linear Regression
0®000000

Guessing

The program will first “randomly guess” the slope of the line.

4 - T T T T |
3 [-
ol (1,2), | Guesses m = 3.
= Error of 1.25.
1l i Square the error.
(1,.75)
| | | | |

1 2 3 4 5

Can repeat for each data point and square the errors to keep it
positive.

Linear Regression
00e00000

Loss Function

Plot the error. It's parabolic since we used a squared loss
function. This would look different if we used a different error

function, such as absolute value or Huber loss.
T T

o

error
T
!

Linear Regression
00080000

Optimize

After the first guess, how does the model find a better guess?
Mpew = Meyrent — KE' (Meyrren:) Where E(x) is this error

function.
10F7 :
9 - |
8 - |
7 - |
6 1 Mpew = 0.75 — (0.01)(—13)
Al i —0.88
30 : which is a better slope.
% i | Now repeat.
|

Linear Regression
[e]e]e]e] Telele)

But What About...

@ This process of finding the best slope via minimizing the
error is called gradient descent.

e But Raymond, aren't there already formulas out there
that can just find the optimal error/best slope?
Yes, however, this is for simple cases (such as the
previous example).

@ Notice in the example we just did we had a y-intercept at
the origin. What do we do if the y-intercept is shifted?

Linear Regression
[e]e]e]e]e] le]e)

Guessing y-int as well

Add a dimension to guess the y-intercept as well
error

y-int

slope

and use partials instead

0

Mpew = Meyrrent — k&E(Xay)

0
bnew = bcurrent - ka_yE(X7y)

Linear Regression
00000080

Multiple Parameters

So if you have a bunch of parameters, you would instead use

y=>b+mxi+ myxp+ -4+ Mp_1Xp_1

8
bnew - bcurrent (% (b my,mo,---, mn—l)
0
my pnew = ml,current - kaTE(b7 my,mo,---, mn—l)
1

0

Mp—1

Mp—1,new = Mnp—1,current — k E(ba my,mp,---, mnfl)-

Linear Regression
0000000e

Multiple Parameter Effects

@ Clearly you would be plotting points in R,

@ Something you may want to see is how the results are
changing over time, which is hard to see conceptually.

@ Usually you can only graph individual parameters/slices at
a time
= harder to understand results
= need more faith in the programming.

@ What about nonlinear best fit curves?
Assuming you know the degree already, similar idea but
grosser: y = ax> + bx? + cx +d
e More annoying to graph.
e How will the error function change?

Other ML Algorithms
[Je]

Alternative Scenarios

@ Logistic Regression: Two possibilities such as T /F,
Pass/Fail, Survive/Die, etc.

e Ex: 93% match on netflix

@ GA (Genetic Algorithm), Neat (NeuroEvolution of
Augmenting Topologies), SA (Simulated Annealing), EM
(Expectation-Maximization), PSO (Partial Swarm
Optimization) are all different types of machine learning
algorithms, all with their own benefits and limitations.

o Different error minimizations for different situations

e Supervised vs semi-supervised vs
unsupervised /independent learning (tagged vs untagged)

@ Let's finally look at a neural network!

Other ML Algorithms
oe

Alternative Scenarios

@ Up until now, everything has either been “linear” or we
know a lot of the information already, AKA that was the
easy stuff.

@ Works for simple enough scenarios but will be fairly
ineffective for more complicated situations (which aren't

hard to find).

Neural Networks
9000000000000 00

What is a Neural Network

@ In order to deal with more complicated scenarios, we'll
use a neural network.

@ Conceptually, it's a chain of (complete) bipartite graphs.

Inputs Hidden Layers Outputs

@ Each edge has a weight that gets adjusted (like the slopes
in linear regression model).

Neural Networks
0e0000000000000

MNIST Example

@ We'll use a categorical example to understand this,
however, these neural networks can also be used in
noncategorical machine learning as well.

e Makes more sense at first in a more categorical version
in my opinion.

@ A model using the Modified National Institute of
Standards & Technology's datasets is a good example to
keep in the back of your mind.

e This particular example using MNIST datasets is
typically considered to be the “hello, world” of neural
nets.

Neural Networks
0008000000000 00

Edge Weights

Each edge has a weight that will get adjusted, just like the
slopes in the linear regression example.
aj b; Ci d;

What do we want b;c3's weight to be? What parameters
should it have?

Neural Networks
0000e0000000000

Evaluating Nodes

@ Given a bunch of edge weights, what do we do with it?

@ Suppose we have our inputs (the a;'s) and some randomly
assigned weights (w;'s). To calculate, say by, sum over
the products of weights and inputs connected to b; and
normalize it somehow.

b1 = a(wlal + Whar + W3asz + Wgag + W5a5)

where o(x) is either a sigmoid function, H% ora
>0
rectifying activation function, (ReLU)(x) = o=
0 x<0

@ We can also add a bias for a binary state by subtracting it

inside o (usually needed if using an activation function
like ReLU).

by = o(wya; + woay + wzas + wyag + wsas — 3)

Neural Networks
0000080000000 00

Counting The Variables

@ Let's calculate how many weights and biases the neural
network will need to figure out.

@ 5 inputs, 2 hidden layers with 4 nodes each, and 3
possible outputs = (5 x 4) + (4 x 4) + (4 x 3) = 48
weights and 4 4+ 4 + 3 = 11 biases, totaling 59 variables.

Neural Networks
000000e00000000

Realistically...

@ Unfortunately, you will never find a NN this simple.

@ In the MNIST example, each pixel is an input. Each jpg is
28 x 28 = 784 variables for the first layer alone!

Q 0 o 784x16+16x 16 + 16x 10
d 5 C weights

16 +16 + 10

biases
13,002

. Finding
Learning —

weights and

@ You can imagine there are a lot of variables to look for
and approximate = it's better to leave it to a machine.

Neural Networks

000000000000 00

What is ML

@ Back to the question:

What is machine learning?
What does it mean for a
machine to learn?

@ Machine learning is just when a program minimizes the
error of guessed weights and biases.

Neural Networks
00000000 e000000

Linear Algebra Perspective

e But Raymond, everyone says you need to know linear
algebra to understand machine learning? Where's all the
linear algebra? | want my linear algebra!

Or my money back...

@ Like a lot of things, writing things with matrices and
vectors can clean it up a bit.

@ Not to mention, this is probably how your program will
calculate everything. Remember, NumPy is your friend!

Neural Networks
000000000 e00000

Linear Algebra Perspective

o Let w;; be the weights of edges between first and second
layers, a; be a the activations from the first layer, and b;
be the biases. Then

Woo Wo1i -+ Won do bo

Wio Wi1 - Winp a by
o(Wa+b) =0 _ L . T

Wko Wki - Wkn dn by

@ How does this do the job more efficiently or make things
easier?

Neural Networks
0000000000800 00

Neurons

@ What is a “neuron” in an artificial neural network?
A neuron is a function

n; : {Outputs from Previous Layer} — [0, 1]
defined by the weights and biases.

@ Thus a neural network is really just a giant composition
of functions.

@ Let's say we set up a NN as explained. What will
happen? It's first run through it will spit back something
not correct (probably).

Neural Networks
00000000000 e000

Cost Function

o If we give it a 7, it will return random numbers. To
change the weights, we need a cost function.

Node 0: (0.43 —0)2 — 0.1863

Node 1: (0.28 —0)?> — 0.0784

Node 2: (0.19 — 0)> — 0.0361

Node 3: (0.88 — 0)2 — 0.7744 What do you notice
Node 4: (0.72 —0)2 —» 0.5184 about these numbers
Node 5: (0.01 — 0)2 —> 0.0001 relative to how correct
Node 6: (0.64 — 0)2 — 0.4096 the model guessed?
Node 7: (0.86 —1)®> — 0.0196

Node 8: (0.99 — 0)2 — 0.9801

Node 9: (0.63 — 0)> — 0.3969

@ The cost is the sum over these squares = 3.3999. We
want to minimize this.

Neural Networks
000000000000 e00

Cost Function

@ Find the average cost of all of your training data.

@ Observation: Cost functions takes in weights and biases
and outputs a single number. It's defined with respect to
the training data.

@ This is the corresponding “error function” we saw earlier.

This beast of a

cost function lives in
R\{Weights}|+|{biases}\+1

Neural Networks
0000000000000 e0

Gradient Descent

@ Recall that the gradient of a function gives the direction
of the steepest ascent = —V C is the direction of
steepest descent.

@ Put all of the weights and biases in a column vector, v,

and transform it the following way

Vi v — V(7).

@ Then repeat with the new weights and biases. VC can be
found somewhat efficiently using back propogation.

e A recursive alorithm nudging layers individually instead
of the entire thing.

Neural Networks
0000000000000 0e

Stochastic Gradient Descent

@ In practice, you would instead want to take training data,
shuffle it up, and making mini-batches. Then compute a
step of the back propogation according to the mini-batch.
Repeat for each mini-batch.

@ This is less efficient as it's not over the entire set,
however, this is a major computational speed up and
fairly good at approximating.

@ “It would be like a drunk man stumbling aimlessly down a
hill but taking quick steps, rather than a carefully
calculating man determining the exact downhill direction
of each step, before taking a very slow and careful step in
that direction.” - Grant Sanderson.

Additional Notes
@00

Common Problems

@ Bad or incomplete data

e How do you think this affects the model?
e How/when can we deal with these holes?

e More structured data = the more even the local minima
are with respect to each other.

@ Overtraining (memorizing vs generalizing)
e Why is this bad?

e Obtaining a suffient amount of labeled data

e unsupervised learning

Additional Notes
(o] le}

Fun Thoughts

@ The model is actually smarter than just guessing!

@ Classifying data based on topology of cost function and
hidden layers

@ Manifold hypothesis

e Fundamental groups and higher homotopy

Additional Notes
ooe

Thank you!

	Properties of ML
	Linear Regression
	Other ML Algorithms
	Neural Networks
	Additional Notes

